

Ensemble Learning Breast Lesion Classification based on Magnetic Resonance Spectroscopic Imaging and Diffusion-Weighted Imaging

Marlene Lin¹, Ajin Joy², Andres Saucedo², and M. Albert Thomas²

University of California, Los Angeles (UCLA)

1 Department of Computational and System Biology

2 Department of Radiological Sciences, David Geffen School of Medicine

Introduction

Breast cancer screening and diagnostics

· One of the most prevalent cancers in females and one of the leading causes of cancer deaths worldwide.

· Lifetime risk of 12.92% and an estimated 297, 790 new cases to be diagnosed in females in the U.S. in 2023.

· Early detection of malignancy before tumor metastasis outside the breast regions improve treatment outcomes.

· Small sizes and slow proliferation of early tumors - difficult to detect.

Existing breast cancer screening techniques

X-ray based	Magnetic Resonance Imaging (MRI) based		
Mammography	Dynamic-contrast Enhanced MRI (DCE-MRI)	Diffusion-Weighted Imaging (DWI)	
Gold Standard Fast Scanning	· High sensitivity	High sensitivity in conjunction with DCE-MRI	
Increased false findings Use ionizing radiation	Wide range of specificity Contrast potentially harmful	Wide range of specificity Not protocol for breasts	

RESEARCH GOAL

Address the knowledge gap in using learning-based machine ensemble learning classifiers to classify breast tumors (malignant v.s. benign) using features from both multi-voxel. multi-dimensional MRSI and DWI data.

Methodology

Magnetic Resonance Spectroscopic Imaging (MRSI) An efficient biochemical tool for quantifying metabolite and lipid concentrations in human tissues non-invasively

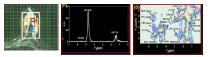
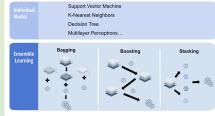


Figure 1. 5D Echo Planar-Correlated Spectroscopic Imaging (EP-COSI) scan of a benign lesion of a 32-year-old female. Left: Volume-of-interest placement; Middle: 1D spectrum (the red-outlined voxel); Right: 2D spectrum.

Datasets

5D EP-COSI and DWI data from 23 subjects malignant breast masses (mean age 53 [range:33–71] y.o. 17 benign breast masses (mean age 37 [range:19-60] v.o. 10~12 voxels are selected for each MRSI dataset based on the water-corrected choline map, · 241 malignant and 195 benign voxels after outlier removal.



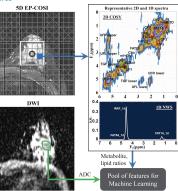


Figure 2. An example of 2D correlated spectroscopy (COSY) spectrum and Apparent Diffusion Coefficient (ADC) map. Localizer image for 5D EP-COSI acquisition in shown on the top left panel with ROI in white box. An extracted COSY spectrum and ID non-water-suppressed (NWS) spectrum are on the right. Bottom-left panel shows the corresponding ADC map for the same subject with lesion marked in green

Methyl Fat	FMETD	
Methylene Fat	FAT	
Water	WAT	
Olefinic Fat	UFD	
Methylene Glyceral Backbone	MGB	
Cross-peak	CP	
Unsaturated Fatty Acid Cross Peak	UFR(R: Right; L: Left)	
Triglyceride Fat Cross Peak	TGF	

Table 1. Metabolite and lipid acronyms

Significant features

9 features, including ADC, ratios of FAT21(2,1-2,1), FAT23(2.3-2.3), CP2(1.32-0.9), CP6(2.06-1.32), CP8(4.2-3.9), and TGFUpper w.r.t. 1D FAT (1.4), ratio of FMETD w.r.t. 1D water, and the ratio of FAT21(2.1-2.1) with respect to 1D UFD were selected by statistical tests (p-value < 0.01) and recursive feature elimination (numbers in parentheses indicate peak locations).

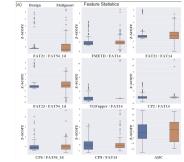
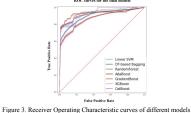


Figure 2. Box plots of the most important features (standardized). ROC curves for the final model



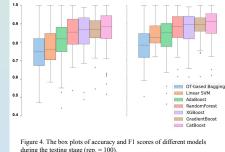


Figure 4. The box plots of accuracy and F1 scores of differ	ent models
luring the testing stage (rep. = 100).	

Model	AUC (%)	Accuracy (%)	F1 score (%)
AdaBoost	88.54 ± 10.79	81.08 ± 10.81	83.46 ± 10.39
CatBoost	95.17 ± 05.94	86.93 ± 09.58	88.44 ± 09.87
DT-based Bagging	84.08 ± 11.88	74.61 ± 11.09	78.62 ± 09.71
GradientBoost	94.37 ± 06.35	86.97 ± 07.90	89.39 ± 06.73
Linear SVM	94.77 ± 06.44	77.43 ± 09.86	83.94 ± 06.37
RandomForest	92.24 ± 07.30	85.31 ± 09.15	87.59 ± 08.06
XGBoost	92.98 ± 08.18	85.65 ± 09.61	87.64 ± 08.58

Table 2. Model performance, best scores in bold.

Model Comparison

Dataset was split into 80% for training, 20% for testing and cross-validated using the shuffled grouped 5-fold approach.

One-way ANOVA + Tukey's post-hoc tests showed CatBoost, Gradient Boost, XGBoost, Random Forest to be the best-performing methods from repeated testings with randomized model initializations and data splits.

Discussion

· Unused features from the imaging data:

Incorporate more image-based radiomics features from DWI, or potentially DCE-MRI

· Limited datasets and data source:

Collect more datasets, ideally from different machines/sites, to ensure model generalizability

Classification task:

Use models to classify other types of tumors and tumors of different grades aiming at higher specificity by establishing connections between MRSI spectra quantitations and cancer metabolism

Conclusion

· Highlighted the potential of using features from both five-dimensional 5D EP-COSI and DWI for accurate breast lesion classification.

· Gradient Boost-based ensemble learning and random forest classifiers achieved accuracies of 85 - 87% and F1 scores of 87 - 89%.

· ADC values from the DWI and lipid cross-peaks unique to 2D COSY spectra were identified as important features.

Dr. Melissa Joines, Dr. Stephanie Lee-Felker and Dr. Maggie DiNome were responsible for patient recruitment. This work was supported by a CDMRP grant from the US Army Breast Cancer Research 340 Program:# W8IXWH-16-1-0524.