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Introduction

Breast cancer screening and diagnostics

- One of the most prevalent cancers in

females and one of the leading causes of
cancer deaths worldwide.

- Lifetime risk of 12.92% and an estimated
297, 790 new cases to be diagnosed in (]
females in the U.S. in 2023. ©

-

« Early detection of malignancy before
tumor metastasis outside the breast
regions improve treatment outcomes.

« Small sizes and slow proliferation of early
tumors — difficult to detect.

Existing breast cancer screening techniques

X-ray based Magnetic Resonance Imaging (MRI) based

Dy Enhanced MRI Imaging
(DCE-MRI) (owi)

Gold Standard High sensitivity High sensitivty in

conjunction with DCE-MRI = Multparametric

Fast Scanning 3
MR (mpMR)

- Increased false findings | - Wide range of specificity Wide range of specificity

Use ionizing radiation | - Contrast potentially harmful Not protocol for breasts
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Address the knowledge gap in using
ensemble learning-based machine
learning classifiers to classify breast
tumors (malignant v.s. benign) using
features from both multi-voxel,
multi-dimensional MRSI and DWI data.

Methodology

Magnetic Resonance Spectroscopic Imaging (MRSI)

An efficient biochemical tool for quantifying metabolite and
lipid concentrations in human tissues non-invasively.

Figure 1. 5D Echo Planar-Correlated Spectroscopic Imaging
(EP-COSI) scan of a benign lesion of a 32-year-old female. Left:
Volume-of-interest placement; Middle: 1D spectrum (the red-outlined
voxel); Right: 2D spectrum.

Datasets

- 5D EP-COSI and DWI data from 23 subjects

- malignant breast masses (mean age 53 [range:33-71] y.o.
-17 benign breast masses (mean age 37 [range:19-60] y.o.

- 10~12 voxels are selected for each MRSI dataset based on
the water-corrected choline map,

- 241 malignant and 195 benign voxels after outlier removal.
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Figure 2. An example of 2D correlated spectroscopy (COSY) spectrum and
Apparent Diffusion Coefficient (ADC) map. Localizer image for 5D
EP-COSI acquisition in shown on the top left panel with ROI in white box.
An extracted COSY spectrum and 1D non-water-suppressed (NWS)
spectrum are on the right. Bottom-left panel shows the corresponding ADC
map for the same subject with lesion marked in green.

Methyl Fat 1 FMETD
Methylene Fat | FAT
‘Water WAT
Olefinic Fat | UFD
Methylene Glyceral Backbone | MGB
| Cross-peak | cp
| Unsaturated Fatty Cross Peak | UFR( R: Right; L: Left)
Triglyceride Fat Cross Peak TGF

Table 1. Metabolite and lipid acronyms

Results

Significant features

9

features, including ADC, ratios of FAT21(21-21),

FAT23(2.3-2.3), CP2(1.32-0.9), CP6(2.06-1.32), CP8(4.2-3.9), and
TGFUpper w.rt. 1D FAT (1.4), ratio of FMETD w.r.t. 1D water, and
the ratio of FAT21(2.1-2.1) with respect to 1D UFD were selected
by statistical tests (p-value < 0.01) and recursive feature
elimination (numbers in parentheses indicate peak locations).
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Figure 2. Box plots of the most important features (standardized).
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Figure 3. Receiver Operating Characteristic curves of different models
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Figure 4. The box plots of accuracy and F1 scores of different models
during the testing stage (rep. = 100).

Model AUC (%) Accuracy (%) F1 score (%)
AdaBoost 88.54£10.79 81.08= 10.81 83461039
CatBoost 95.17£05.94 86.93%09.58 88.44 +09.87

DT-based Bagging 84.08= 11.88 7461 £ 11.09 78.62%09.71
GradientBoost 943740635 86.97£07.90 89.39206.73
Linear SVM 94770644 7743+ 09.86 83940637
RandomForest 9224£07.30 8531£09.15 87.59 % 08.06
XGBoost 92.98+08.18 85.65+09.61 87.64%08.58

Table 2. Model performance, best scores in bold.

Model Comparison

Dataset was split into 80% for training, 20% for testing
and cross-validated using the shuffled grouped 5-fold
approach.

One-way ANOVA + Tukey's post-hoc tests showed
CatBoost, Gradient Boost, XGBoost, Random Forest to be
the best-performing methods from repeated testings
with randomized model initializations and data splits.

Discussion

- Unused features from the imaging data:
Incorporate  more image-based radiomics
features from DWI, or potentially DCE-MRI

- Limited datasets and data source:

Collect more datasets, ideally from different
machines/sites, to ensure model
generalizability

- Classification task:

Use models to classify other types of tumors
and tumors of different grades aiming at higher
specificity by establishing connections between
MRSI|  spectra quantitations and cancer
metabolism

Conclusion

- Highlighted the potential of using features
from both five-dimensional 5D EP-COSI and
DWI for accurate breast lesion classification.

- Gradient Boost-based ensemble learning and
random forest classifiers achieved accuracies
of 85 - 87% and F1 scores of 87 - 89%.

ADC values from the DWI and lipid
cross-peaks unique to 2D COSY spectra were
identified as important features.
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