
Machine learning for penguin classification 1

🐧
Machine learning for penguin classification

Created

Tags Project Python

1.1 Group Members:
1. Tobey Ho 
2. Kristina Lau 
3. Marlene Lin

1.2 Contributions:
All three of us wrote data import (2.1), cleaning (2.3), and feature selection (4).

Kristina led part 1 of both the exploratory data analysis (pair-wise scatterplots (3.4), summary table (3.1) and the modeling 
(nearest neighbors (5.4)). And split the data (2.3).

Marlene wrote the decision boundary function (5.1), did part 2 of both data analysis (bivariate KDEs (3.3)) and modeling (neural 
network (5.3)), and led the discussion (6).

Tobey led part 3 of both data analysis (boxplots (3.2)) and modeling (multinomial logistic regression (5.2)).

We were responsible for the explanations of our own parts' figures and models.

2. DATA IMPORT AND CLEANING
To begin, we are going to download our data set and import the libraries we will need. Then, we will look over the first 5 rows of data 
to see the information we will be working with.

2.1 Import modules AND data

import pandas as pd 
import numpy as np 
import urllib 
from matplotlib import pyplot as plt 
import seaborn as sns 
import matplotlib.patches as mpatches  
 
from sklearn.model_selection import train_test_split 
from sklearn import preprocessing 
from itertools import combinations 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import confusion_matrix, accuracy_score, ConfusionMatrixDisplay 
 
from sklearn.linear_model import LogisticRegression 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.neural_network import MLPClassifier 
 
from sklearn.utils._testing import ignore_warnings 
from sklearn.exceptions import ConvergenceWarning 
 
from IPython.display import Image
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url = "https://philchodrow.github.io/PIC16A/datasets/palmer_penguins.csv" 
penguins = pd.read_csv(url) 
penguins.head()

studyName
Sample
Number

Species Region Island Stage Individual ID
Clutch
Completion

0 PAL0708 1
Adelie Penguin
(Pygoscelis
adeliae)

Anvers Torgersen
Adult, 1 Egg
Stage

N1A1

1 PAL0708 2
Adelie Penguin
(Pygoscelis
adeliae)

Anvers Torgersen
Adult, 1 Egg
Stage

N1A2

2 PAL0708 3
Adelie Penguin
(Pygoscelis
adeliae)

Anvers Torgersen
Adult, 1 Egg
Stage

N2A1

3 PAL0708 4
Adelie Penguin
(Pygoscelis
adeliae)

Anvers Torgersen
Adult, 1 Egg
Stage

N2A2

4 PAL0708 5
Adelie Penguin
(Pygoscelis
adeliae)

Anvers Torgersen
Adult, 1 Egg
Stage

N3A1

2.2 Split Data
Now, we are going to hold out 20% of the data set as testing data and the remaining 80% will become training data. We want to split 
this data prior to cleaning so that we do not accidentally pollute our test set.

np.random.seed(1000) 
train,test = train_test_split(penguins, test_size = 0.20)

2.3 Clean Data
Now that we have split our data, we can begin the cleaning process and this can be done by writing a function so that we can easily 
apply it to both training and testing data. The function will remove any unnecessary data (NaNs, the "." gender penguin, irrelevant 
columns, etc.) and transform any text data to numbers.

#how fit_transform encode! 
sex_encoding =  {'MALE':0,"FEMALE":1} 
species_encoding = {'Adelie':0, 'Chinstrap':1, 'Gentoo':2} 
island_encoding = {'Biscoe':0,'Dream':1,'Torgersen':2} 
def cleanpg(data, numeric): 
    """ 
    cleans the data 
    parameters: 
        data: the data set 
        numeric: bool, user input as to whether any strings will need to be 
                 converted to integers 
    returns: the cleaned data, predictor variables X, target variable y 
    """ 
    # use only data that does not have the sex = "." 
    data = data[data.Sex != "."] 
     
    # shorten species name 
    data["Species"] = (data["Species"].str.split()).str.get(0) 
     
    # make a copy of the data so that we do not alter the original data 
    clean = data.copy() 
     
    # drop irrelevant data and NaN values 
    clean = clean.drop(["studyName","Sample Number", "Region","Stage","Individual ID", 
                      "Clutch Completion","Date Egg", "Comments"], axis = 1).dropna() 
     
    # convert str values to integers  
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    if numeric:   
        le = preprocessing.LabelEncoder() 
        clean["Island"] = le.fit_transform(clean['Island']) 
        clean["Species"] = le.fit_transform(clean['Species']) 
        clean["Sex"] = le.fit_transform(clean['Sex']) 
     
    # make predictor and target variables 
    X = clean.drop(["Species"], axis = 1) 
    y = clean["Species"] 
 
    return (clean,X,y)

The function is now ready to be applied to our training and test data! Let's look at our new clean data.

# pass in all the data for cleaning - data exploration purpose 
clean, X_null, y_null = cleanpg(penguins, numeric = False) 
cleannum, X_num, y_num = cleanpg(penguins, numeric = True) 
train_clean, Xtrain, ytrain = cleanpg(train, numeric = True) 
test_clean, Xtest, ytest = cleanpg(test, numeric = True) 
clean.head()

Species Island
Culmen Length
(mm)

Culmen Depth
(mm)

Flipper Length
(mm)

Body Mass (g) Sex

1 Adelie Torgersen 39.5 17.4 186.0 3800.0 FEMALE

2 Adelie Torgersen 40.3 18.0 195.0 3250.0 FEMALE

4 Adelie Torgersen 36.7 19.3 193.0 3450.0 FEMALE

5 Adelie Torgersen 39.3 20.6 190.0 3650.0 MALE

6 Adelie Torgersen 38.9 17.8 181.0 3625.0 FEMALE

3. EXPLORATORY DATA ANALYSIS

3.1 Summary Table
Let's begin exploring our data by creating a summary table of all our features. We are going to group by our qualitative features of 
species, island, and sex.

groups = clean.groupby(["Species", "Island", "Sex"])[["Culmen Length (mm)", 
        "Culmen Depth (mm)", 
        "Flipper Length (mm)", 
        "Body Mass (g)", 
        "Delta 15 N (o/oo)", 
        "Delta 13 C (o/oo)"]].mean().round(2) 
groups
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From our summary table, we can observe many relationships. For one, we can see which species reside on each island. Biscoe 
island has Adelie and Gentoo penguins, Dream island has Adelie and Chinstrap penguins, and Torgensen island only has Adelie 
penguins. Secondly, we can see that sex plays a role in our quantitative features within species such that females have smaller 
values as compared to males in all categories. We can also see trends for each species within our quantitative features. It seems 
that Gentoo penguins have the shallowest culmen depth, the longest flipper length, the largest body size, and the most negative 
delta 13 C values. Adelie penguins have the shortest culmen length and Chinstrap penguins have the highest delta 15 N value.

3.2: Boxplots
To look at each qualitiative feature between species, we can use a boxplot! Boxplots can give us an idea of how spread out each 
variable is by giving us the mean, median, and max, if there are any notable outliers, and if the variable will be in a low or high 
range.

# list of quantitative features 
numerics = ['Culmen Length (mm)','Culmen Depth (mm)', 
            'Flipper Length (mm)', 'Body Mass (g)', 
            'Delta 15 N (o/oo)', 'Delta 13 C (o/oo)'] 
 
# creates figure by looping through each quantitave feature 
fig, ax = plt.subplots(1,len(numerics),figsize=(50,10), sharex = True) 
for i in range(0,len(numerics)): 
    sns.boxplot(data = clean, x = "Species", y = numerics[i], hue = "Species", ax = ax[i])
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The boxplots correlate with our summary table and give us a good visualization of the trends mentioned above for each species.

3.3: Bivariate kernel density estimate (KDE) plots
The bivariate distributions using kernel density estimation (KDE) can help us visualize the distribution of observations of 
different groups in a dataset using continuous probability density curves in two dimensions. Relative to a histogram, KDE can 
produce a plot that is less cluttered and more interpretable, especially when drawing multiple distributions. By splitting the dataset 
based on species, and plotting the KDE plots of pairs of quantitative varaibles, we can get an intuition on which pair of quantitative 
variables would best distinguish each species.

f, ax = plt.subplots(len(numerics)-1,len(numerics)-1,figsize=(50,50)) 
for i1 in range(0,len(numerics)): 
    for i2 in range(i1+1,len(numerics)): 
        if i1 is not i2: 
            # Draw a contour plot to represent each bivariate density 
            plot = sns.kdeplot( 
                data=clean, 
                x=numerics[i1], 
                y=numerics[i2], 
                hue="Species", 
                thresh=.1,ax = ax[i1,i2-1],legend=True,levels=10)
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The KDE plots above show that some pairs of the quatitative variables could be used to better distinguish among species. While a 
bivariate KDE is three-dimensional, plotting the level curves/contour lines could 'flatten' the plot into 2D for easier visualization. The 
groups of level curves of different colors display the joint-density distributions of the x- and y- variables for each of the three species. 
Since the shape of the cluster is determined by both the mean and variance of the distributions, if two clusters are more separated 
from each other, it means the overall observations of the two variables are more different between the two clusters. Therefore, by 
looking at which pairs of the quantitative variables better separate the clusters, we can be informed on feature selection for the 
upcoming machine learning.

Some of the pairs that work well: Culmen length & depth, culmen length & flipper length

3.4: Pairwise Scatter Plot
Pairwise scatter plots allow us to compare multiple combinations of two features to better understand which set of features should 
be used in the model. By splitting the dataset based on species and plotting each quantitative feature against each other, we can 
see which features are able to distinguish each species the best.

sns.pairplot(clean, hue="Species")
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From the plot, it's really easy to see that flipper length and culmen length or culmen length and culmen depth gives us really 
distinct clusters of each species. Thus, these could be good candidates for features to use in our model.

4. FEATURE SELECTION¶
We need to use features that would best distinguish each species in our models, so writing a function that can help each model 
search for the right features would be useful! We need 2 quantitative features and 1 categorical feature, so the total number of 
combinations is C(6,2) * 2 = 15 * 2 = 30. Since the number of combinations and our dataset are small, an exhuastive search for 
automated feature selection wouldn't take very long. Although we could use the qualitative features that showed good clusters in our 
data exploration, these are mainly visual observations and do not tell us statistically which features are the strongest predictors of 
species. By using a function to manually check all the combinations, we would have more accurate statistics as to which features we 
should be used in our models.

4.1 Exhaustive Feature Search Function¶

# creating a list of all possible combinations 
 

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#4.-FEATURE-SELECTION
http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#4.1-Exhaustive-Feature-Search-Function
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# all pairs 
quant_combos = list(combinations(numerics,2)) 
pg_combos = [] 
 
#loops over pairs to append qualitative elements and add combos to pg_combos list 
for i in quant_combos: 
    sex_combos = list(i) 
    island_combos = list(i) 
    sex_combos.append("Sex")  
    island_combos.append("Island") 
    pg_combos.append(sex_combos) 
    pg_combos.append(island_combos)

@ignore_warnings(category = ConvergenceWarning) 
def find_feature(model, combos,X,y): 
    ''' 
    Finds the best feature selection for a ML model 
    Inputs: ML model and a list of the feature selection combinations 
    Outputs: Optimized feature select, its cv score, and amount of total combinations 
    ''' 
    best_combo = [] 
    best_score = 0 
    for cols in combos: 
        x = cross_val_score(model, X[cols], y, cv = 5).mean() 
        if x > best_score: 
            best_combo = cols 
            best_score = x 
    return best_combo, np.round(best_score, 3)

Features for logistic regression model:¶

LG = LogisticRegression(solver = "saga") 
best_combo_log, best_score_log = find_feature(LG, pg_combos,Xtrain,ytrain) 
best_combo_log, best_score_log

(['Culmen Length (mm)', 'Culmen Depth (mm)', 'Island'], 0.965)

Features or K nearest neighbors:

nbrs = KNeighborsClassifier()` 
 
`best_combo_knn, best_score_knn = find_feature(nbrs, pg_combos,Xtrain,ytrain)` 
 
`best_combo_knn, best_score_knn`

(['Culmen Length (mm)', 'Culmen Depth (mm)', 'Sex'], 0.977)

# to see if the best combination from the logistic regression and neural networks models would 
# be a decent fit for the K nearest neighbors model 
poss = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Island'] 
cross_val_score(nbrs, Xtrain[poss], ytrain, cv = 5).mean()

0.9727752639517344

Features for neural networks:¶

mlp = MLPClassifier() 
best_combo_nn, best_score_nn = find_feature(mlp, pg_combos,Xtrain,ytrain) 
best_combo_nn, best_score_nn

(['Culmen Length (mm)', 'Culmen Depth (mm)', 'Island'], 0.969)

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#Features-for-logistic-regression-model:
http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#Features-for-neural-networks:
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After performing exhaustive search on all possible combinations of predictor variables, ['Culmen Length (mm)', 'Culmen Depth 
(mm)', 'Island'] turned out to be the best combination for the logistic regression and neural networks models with a CV score of 
0.965 and 0.957, respectively. The best combination for K nearest neighbors was ['Culmen Length (mm)', 'Culmen Depth (mm)', 
'Sex'] with a CV score of 0.977, but since the other two models shared a common set of best features and these features also 
scored pretty high for the K nearest neighbors model (0.973), it made sense to use ['Culmen Length (mm)', 'Culmen Depth (mm)', 
'Island'] for all of the models. Additionally, it would make it easier for us to compare each model if we used the same features for 
consistency.

best_combo = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Island'] 
Xtrain = Xtrain[best_combo] 
Xtest = Xtest[best_combo]

5. MODELING
We decided to use Multinomial Logistic Regression, Neural Networks, and K-Nearest Neighbors as our models. Because we need 
to visualize all three of these with decision region plots, it would be easier to write a function that can be applied to each model.

Cross-validation to choose complexity parameters.

Evaluation on unseen testing data, including a confusion matrix.

A visualization of decision regions for the model, with one plot corresponding to each value of the qualitative variable. You are 
not permitted to use the mlxtend package to construct your decision regions. Your colors must be consistent between your 
decision region plots. You must also provide a readable legend and correct axis labels.

Discussion of the mistakes made by each model. Your discussion should give intuition for why the model fails in certain cases, 
using the decision regions to illustrate your explanation.

5.1 Decision boundary function¶

def dec_bound(var,X_in,y_in,mdl,encoding,colormap): 
    ''' 
    plot the decision boundary of the model (mdl) on the cleaned data  
   (X_in, predictors, y_in, target) and variables(var) 
    INPUT: 
        X_in: predictors 
        y_in: target 
        mdl: model 
        var: a list of variables, the first two quantitative, the third qualitative 
        encoding: dictionary, how the categorical variable is encoded to numeric,  
       key is the number, value is the original var. 
        colormap: dict, color data points based on species,  
       key: 0, 1, 2, based on species_encoding, value: color, string. 
    ''' 
    #categorical/qualitative 
    catl =  penguins[var[2]].unique() 
    fig,ax = plt.subplots(1,len(var),figsize=(25,10)) 
    # fit the model on real data  
    mdl.fit(X_in, y_in)  
    x = X_in.to_numpy() 
    y = y_in.to_numpy() 
    for i in range(len(catl)): 
        # plot the real data points corresponding to each of the categorical var 
        X = X_in[X_in[var[2]] == i] 
        Y = y_in[X_in[var[2]] == i] 
        # scatter plot coordinates are based on the values  
    # of the first two quanlitative variables 
        ax[i].scatter(X[var[0]], X[var[1]], c = Y.map(colormap), cmap = "ocean")  
        # simulated data - grid 
        x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 
        y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 
        xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) 
        #ravel() turns back to 1 dimensional array 
        XX = xx.ravel()  
        YY = yy.ravel() 
        # using the np.c_ attribute to join together the two parts of the grid. 
        XY = np.c_[XX, YY] 
        # append island value to the end of each 2d array in the list XY 

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#5.1-Decision-boundary-function
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        XY = [np.append(twos, i) for twos in XY] 
        # turn the resulting predictions p back into 2d 
        p = mdl.predict(XY) 
        p = p.reshape(xx.shape) 
        # use contour plot to visualize the prediction boundary 
        ax[i].contourf(xx, yy, p, cmap = "ocean", alpha = 0.2) 
        #label graphs 
        ax[i].set(xlabel = var[0],  
        ylabel = var[1], 
        title = var[2] + " " + list(encoding.keys())[i]) 
         
#see model evaluation part of neural networks for plotting the legends and title

5.2 Multinomial Logistic Regression
Logistic Regression models the probabilities of a binomial event using a logistic curve function. This translates to a multinomial case 
when using multiple inputs, like the qualities of a penguin to evaluate a parametrized probability in the model.

Cross Validation

@ignore_warnings(category = ConvergenceWarning) 
def find_iter(lrange): 
    score_list =[] 
    test_list = [] 
    best_iter = None 
    iter_score = 0 
    for d in lrange: 
        LG = LogisticRegression(solver = 'saga', max_iter = d,random_state=10) 
        LG.fit(Xtrain,ytrain) 
        x = LG.score(Xtrain, ytrain) 
        test = LG.score(Xtest, ytest) 
        cv = cross_val_score(LG,X_num[best_combo],y_num,cv=5).mean() 
        score_list.append(x) 
        test_list.append(test) 
        if cv > iter_score: 
            best_iter = d 
            iter_score = x 
    fig,ax = plt.subplots(1) 
    ax.plot(lrange,score_list,label="train") 
    ax.plot(lrange,test_list,label="test") 
    ax.set(xlabel = "Complexity (depth)", ylabel = "errors", title = "Errors v.s. max_iter of Multinomial Log. Regression") 
    ax.legend() 
    plt.ylim(0.9,1) 
    return best_iter, iter_score

lrange = np.arange(30,150) 
best_iter, iter_score = find_iter(lrange) 
best_iter, iter_score

(57, 0.9649805447470817)
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#fits training data and scores the train and test data 
LG = LogisticRegression(solver = 'saga', max_iter = best_iter,random_state=10) 
LG.fit(Xtrain,ytrain) 
LG_train_score = LG.score(Xtrain,ytrain) 
LG_test_score = LG.score(Xtest,ytest) 
print("score on training " + str(LG_train_score)) 
print("score on testing " + str(LG_test_score)) 
cv1 = cross_val_score(LG,X_num[best_combo],y_num,cv=5).mean() 
print("cross validation score " + str(cv1))

score on training 0.9649805447470817 
score on testing 0.9701492537313433 
cross validation score 0.9629326923076924

Confusion Matrix

#model evaluation on test sets: confusion matrix 
y_test_pred1 = LG.predict(Xtest) 
accuracy1 = accuracy_score(ytest, y_test_pred1) 
print("Accuracy score: " + str(accuracy1)) 
cm = confusion_matrix(ytest,y_test_pred1) 
disp1 = ConfusionMatrixDisplay(cm, display_labels=penguins['Species'].str.split().str.get(0).unique()) 
disp1.plot()

Accuracy score: 0.9701492537313433

Decision Regions

colormap = {0:"red", 1: "green", 2:"blue"} 
 
dec_bound(best_combo,Xtrain[best_combo],ytrain,LG,island_encoding,colormap) 
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
plt.suptitle("Decision regions of training set: neural network")
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colormap = {0:"red", 1: "green", 2:"blue"} 
 
dec_bound(best_combo,Xtest[best_combo],ytest,LG,island_encoding,colormap) 
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
plt.suptitle("Decision regions of testing set: Multinomial logistic regression")

Discussion of Multinomial Logistic Regression
The Multinomial Logistic Regression model looks relatively accurate, as the accuracy score is 97%. The training error is 96.5%, 
and 97% for testing error/accuracy, 96.3% for cv

The best max-iter for the model is found to be 69.
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From the confusion matrix, the model wrongly predicted 1 Chinstrap as Adelie, and 1 Chinstrap as Gentoo on testing sets 
(unforeseen data).

From the decision region plots, it seems all decision boundaries are linear, and the misclassified penguins have culmen length 
and depth measurements close to the boundaries.

5.3 Neural Networks
Description: （Reference: Sklearn documentation: 1.17. Neural network models (supervised))

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a function f():  - >  where m and n are the dimension 
of the input and the output respectively. In this case, both m and n equal 3. Given a set of features and a target, MLP can learn 
a non-linear function approximator for either classification or regression with the hidden layers between input and output layers. 
𝑅^𝑚 → 𝑅^𝑛

Advantages:

Capability to learn non-linear models.

Support multi-label classification with softmax functions which give the probabilities of an input belonging to each of the output 
class

Disadvantages:

MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers, and iterations.

MLP is sensitive to feature scaling and could perform better with min-max normalization

Cross Validation¶

#training the model on the training sets, tuning for hyperparamters with grid search 
 
mlp = MLPClassifier(random_state=1) 
parameter_space = {'hidden_layer_sizes': [(10,30,10),(20,),(10,5,3),], 
    'activation': ['identity','logistic','tanh', 'relu'], 
    'solver': ['sgd', 'adam','ibfgs'], 
    'alpha': [0.0001, 0.01, 0.05, 0.1,1], 
    'learning_rate': ['constant','invscaling','adaptive'], 
    'max_iter': [100,500,1500,2000,3000]} 
#mlp = GridSearchCV(mlp, parameter_space, n_jobs=-1, cv=5) 
#mlp.fit(Xtrain, ytrain)  
#print('Best parameters found:\n', mlp.best_params_) 
# to save time, the best params from the commented out section is: 
best_params =  {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 5, 3), 'learning_rate': 'constant', 'max_iter': 3000, 'so
best_params

{'activation': 'tanh', 
 'alpha': 0.0001, 
 'hidden_layer_sizes': (10, 5, 3), 
 'learning_rate': 'constant', 
 'max_iter': 3000, 
 'solver': 'adam'}

mlp = MLPClassifier(activation = 'tanh', alpha = 0.0001, hidden_layer_sizes = (10,5,3), 
                    learning_rate = 'constant', solver = 'adam',random_state=1,max_iter=3000) 
mlp.fit(Xtrain,ytrain) 
cv2 = cross_val_score(mlp,X_num[best_combo],y_num,cv=5).mean() 
print("score on training " + str(mlp.score(Xtrain,ytrain))) 
print("score on testing " + str(mlp.score(Xtest,ytest))) 
print("cross validation score " + str(cv2))

score on training 1.0 
score on testing 0.9850746268656716 
cross validation score 0.996875

Grid search is a model (estimator) optimization method that performs exhaustive search in the given hyperparameter space for 
optimal performance (best mean cross-validated score). For a typical multi-layer perceptron (one-layer)

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#Cross-Validation
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(References: MLP documentation, Grid Search sklearn 
documentation, Google Developer ML Glossary)

Some of the important hyperparameters include: A hidden layer 
in the MLP is consist of weights, bias, and activation func In the 
above one-layer MLP, the red layer provides a linear 
transformation of the input features X, where each neuron 
corresponds to weights and bias (top). The summation of all 
neurons in the red layer is than passed into an activation 
function (black layer) that is capbale of introducing non-linearity 
into the model to capture more arbitrary features more flexibly. 
The activation function maps the inputs to the ouputs which are 
then feed into the next layer (if there is any).

Hidden layer size:

notice that there are two dimensions, total number of layers, number of neurons in each layer. The overall architecture of the 
layers could affect training accuracy, although there is no guarantee that a wider (more neurons in each)/deeper (more layers) 
network gives better results. it depends!

the parameter hidden_layer_sizes is a tuple where the ith element represents the number of neurons in the ith hidden layer.

General hyperparameters:

solver/optimizer:

decides how the model weights/bias are update in the training process

options given by the documentation

activation:

explained above

options given by the documentation

learning_rate:

step size in gradient descent, smaller rate covers more of the curve when searching for optimum but would take longer 
training time, options given by the documentation

options given by the documentation

alpha:

the strength of the L2 regularization/penalty term that could decourage overfitting. a larger alpha encourage smaller weights 
and give smoother decision boundaries.

max_iter:

Maximum number of iterations. the solver would iterate until convergence to an optimal solution under this constraint
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Confusion Matrix

#model evaluation on test sets: confusion matrix 
y_test_pred2 = mlp.predict(Xtest) 
accuracy2 = accuracy_score(ytest, y_test_pred2) 
print("Accuracy score: " + str(accuracy2)) 
 
cm = confusion_matrix(ytest,y_test_pred2) 
disp2 = ConfusionMatrixDisplay(cm, display_labels=penguins['Species'].str.split().str.get(0).unique()) 
disp2.plot()

Accuracy score: 0.9850746268656716

Decision Regions¶

colormap = {0:"red", 1: "green", 2:"blue"} 
dec_bound(best_combo,Xtrain,ytrain,mlp,island_encoding,colormap)     
   
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
 
 
plt.suptitle("Decision regions of training set: neural network")

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#Decision-Regions
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dec_bound(best_combo,Xtest,ytest,mlp,island_encoding,colormap)    
#not in the function     
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
 
 
plt.suptitle("Decision regions of testing set: neural network")

Discussion of Neural Networks
The Neural Network model achieved a final accuracy score of 98.5%, with training errors of 1 (no mistakes) and testing 
error/accuracy of 98.5% cross validation score is 99.7%

The best hyperparameters are {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 5, 3), 'learning_rate': 'constant', 
'max_iter': 3000, 'solver': 'adam'}. Although further tuning the layer size could perhaps increase the model performance on 
unseen data, but it took too long to tune so I skipped it.

From the confusion matrix, the model wrongly predicted 1 Chinstrap as Adelie

From the decision region plots, it seems all decisions boundaries are linear.

The neural network models could perhaps perform better with more datasets, predictors, and further tunings of the 
hyperparameters (especially scaling/normalization)

5.4 K-Nearest Neighbors

Cross Validation

from sklearn.model_selection import GridSearchCV 
#create new a knn model 
nbrs = KNeighborsClassifier() 
#create a dictionary of all values we want to test for n_neighbors 
nd = {'n_neighbors' : np.arange(1, 25)} 
#use gridsearch to test all values for n_neighbors 
nbrs = GridSearchCV(nbrs, nd, cv=5) 
#fit model to data 
nbrs.fit(Xtrain, ytrain) 
nbrs.best_params_



Machine learning for penguin classification 17

{'n_neighbors': 2}

nbrs = KNeighborsClassifier(n_neighbors=2) 
nbrs.fit(Xtrain,ytrain) 
cv3 = cross_val_score(nbrs,X_num[best_combo],y_num,cv=5).mean() 
print("score on training " + str(nbrs.score(Xtrain,ytrain))) 
print("score on testing " + str(nbrs.score(Xtest,ytest))) 
print("cross validation score " + str(cv3))

score on training 0.9883268482490273 
score on testing 0.9701492537313433 
cross validation score 0.9783653846153847

Confusion Matrix

#model evaluation on test sets: confusion matrix 
y_test_pred3 = nbrs.predict(Xtest) 
accuracy3 = accuracy_score(ytest, y_test_pred3) 
print("Accuracy score: " + str(accuracy3)) 
 
cm = confusion_matrix(ytest,y_test_pred3) 
disp3 = ConfusionMatrixDisplay(cm, display_labels=penguins['Species'].str.split().str.get(0).unique()) 
disp3.plot()

Accuracy score: 0.9701492537313433

Decision Regions¶

#decision boundary 
colormap = {0:"red", 1: "green", 2:"blue"} 
 
dec_bound(best_combo,Xtrain,ytrain,nbrs,island_encoding,colormap) 
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
 
plt.suptitle("Decision regions of training set: K Nearest Neighbors")

http://localhost:8889/lab/tree/Desktop/Desktop%20-%20LINLIN%E2%80%99s%20MacBook%20Air/2023/16/FINAL%20PROJECT%20updated.ipynb#Decision-Regions
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#decision boundary 
colormap = {0:"red", 1: "green", 2:"blue"} 
 
dec_bound(best_combo,Xtest,ytest,nbrs,island_encoding,colormap) 
#create a legend  
colors = list(colormap.values()) 
species = list(species_encoding.keys()) 
plt.legend(handles=[mpatches.Patch(color= colors[0], label=species[0]), 
                    mpatches.Patch(color= colors[1], label=species[1]), 
                    mpatches.Patch(color= colors[2], label=species[2])], loc='upper right') 
 
plt.suptitle("Decision regions of testing set: K Nearest Neighbors")

Discussion of KNN
The KNearest Neighbors model looks relatively accurate, as the accuracy score is 97.0%.

The best number of neighbors is 2

From the confusion matrix, the model wrongly predicted 2 Adelie penguins to be Chinstrap penguins.
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In the decision regions above for training, 1 gentoo penguin was predicted to be a chinstrap penguin on biscoe island. 2 
chinstrap penguins were predicted to be adelie penguins and 1 was predicted to be a gentoo penguin on dream island. on 
torgensen, 2 adelie were predicted to be chinstrap penguins.

6.1 Result overview

cv = [cv1,cv2,cv3] 
acc = [accuracy1,accuracy2,accuracy3] 
pd.DataFrame({"model":["MLR","MLP","KNN"],"cross_val":cv,"accuracy":acc})

model cross_val accuracy

0 MLR 0.962933 0.970149

1 MLP 0.996875 0.985075

2 KNN 0.978365 0.970149

To select the best combination of features (two quantitative & one qualitative predictors), we performed exhaustive searches on 
all possible combinations for each of the three models respectively. The optimal combinations are the same for all 3 models: 
['Culmen Length (mm)', 'Culmen Depth (mm)', 'Island']

the MLR and KNN models have the same final accuracy scores of 0.970, while MLP has 0.985.

In terms of classifying unforseen data, both MLP and KNN make two mistakes while MLP makes 1. MLR misclassifies two 
Chinstrap, one as Adelie, the other as Gentoo, KNN misclassifies two Adelie as Chinstrap, and MLP misclassifies one Chinstrap 
as Adelie.

The decision regions of KNN turn out to be different from both MLR and MLP, which have mostly linear boundaries.

For this particular classification task and the given dataset, we prefer K Nearest Neighbors over MLR and MLP because of its 
has the highest cross-val score and accuracy. While accuracy states that the model performs classification well with the 
particular testing set we have, the cross validation score is a relatively unbiased estimated of the model's generalized 
performance. Coming to tuning, training, and visualizing decision-regions, MLp is not as time-efficient as MLR and KNN. And we 
have performed determined the optimal numeber of iterations to be 69 based on mean cross validation scores.

6.2 Model Improvement
Model performance when more data are availble.

Experimentally, to figure out which model performs more accurately at classifying the penguins, we can evaluate the 
accuracy scores against increasing sizes of the training data.

Theoretically, multinomial logistic regression could work well with relatively small amount of data, which means there is less 
likely to be improvement when the amount of data increases. In contrast, neural networks need a larger amount of data to 
attain higher accuracy.

Model performance when different data are availble

Experimentally, we could alternate the total numbers of measurements we include as our predictors, albeit the 
multicolinearity among them could induce overfitting as we train our models, thus doing little/the opposite to improve the 
overall classification accuracy.

In real world, complex measurement, missingness, and dependence have been important topics in statistical research. 
Many classification or pattern identification tasks are based on much messier datasets that require in-depth cleaning and 
reparametrization.

They are more than just data points, they are penguins! (Reference: Britannica)

We should pay closer attention to the penguin-side of the data as well, understanding how the tasks are done originally as a 
biological question.
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There are currently around 18-21 types penguins in total and, perhaps surprisingly, the majority of them reside on islands 
rather than temperate zone islands rather than Antartica. Taking a closer look at the phylogenetic tree of penguins, 
penguins' appearant differences in crests, foots, fur-colors, body-size, and habitats are used to divide them into different 
Genres.

(Reference: Avibase:) Under the Genus Pygoscelis, nicknamed "brush-tailed penguins", we have Adélie, chinstrap, and 
gentoo. Although some reports that the gentoo could be further divided into 4 sub-species depending on their habitats.

A closer look at the respective species names give us the insight that these penguins could be distinguished by their 
appearances quite easily. Chinstrap is most easily identified because of the narrow black band under its head as if its 
wearing a black helmet. While Adelie penguins have completely black heads, Gentoo a splash of white above the eyes. 
That makes classification easier! Without the need to take body measurements or perform genetic sequencing. (Image 
source: WWF)

From left to right: Adelie, Chinstrap, Gentoo.


