Tau topography subtypes account for clinical heterogeneity and longitudinal trajectories in early-onset Alzheimer's disease

Marlene Lin UCSF MiHDS 25'

Background: Alzheimer's disease (AD) heterogeneity

Characterizing AD heterogeneity improves diagnostic accuracy and disease monitoring Age-of-onset **Cognitive deficits** AD heterogeneity is multi-faceted: e.g., executive Early-onset language memory Late-onset 65 v.o. (EOAD) (LOAD) visuospatial motor memory language Neuropathology La Joie et al, Neurology 2021 visuospatial A. Regional distribution B. Phenotype comparison 3.0 Amyloid PIB SUVR 0.8 nc <0.001 p_{EWE} <0.05 AD > others AD PCA **IVPPA** vPPA > others 3.0 FTP SUVR Tau 0.8

AD heterogeneity in clinical syndromes best reflected by tau topography

Hypothesis-based

Data-driven subtyping

Background (cont.)

Vogel et al., Nat Med 2021 Vo

Previous study limited to participants w/ late-onset, amnestic clinical profiles

Better representation of heterogeneity in an early-onset cohort (less co-pathology, more "atypical" cases)

Identify Sporadic EOAD Subtypes with distinct tau patterns by using robust data-driven method (SuStaIn) on baseline tau-PET from Longitudinal Early-onset Alzheimer's Disease Study (LEADS)

Assess Clinical Heterogeneity and Disease Trajectories of the SuStaIn subtypes, focusing on AD clinical phenotypes, cognitive decline, tau propagation, and atrophy

Subtype and Stage Inference Model (SuStaln)

Unsupervised machine learning algorithm using cross-sectional data to identify subgroups of individuals with distinct pseudo-temporal progression patterns

Reconstructed disease progression (assuming monotonicity of abnormality)

NOT possible to put everyone on a single trajectory

Dataset

- LEADS (aβ- CN: 85; EOAD: 365) baseline 6mm tau-PET images
- Co-registered to MRI, normalized w.r.t. inferior cerebellar gray region for SUVR images
- Parcellations using the Desikan-Killiany atlas
- Combined into ten lobar ROIs
- For each ROI, calculate the volume-weighted mean SUVR
- Derive z-scores using 2-component Gaussian Mixture Model fitted on CN+EOAD
- Thresholds (2/ROI): intersection of lower- and higher-mean components, higher mean For post-clustering analysis: demographic, cognitive, clinical, PET and MRI data...

CN: cognitively normal; MRI: magnetic resonance imaging; APOE: apolipoprotein E; SUVR: standardized uptake volume ratio = quantification of radiotracer (18F-Flortaucipir) uptake ≈ tau level

SuStaln model fit

Subtype number determination

Spatial-temporal trajectories

Average tau-PET images across SuStaIn subtypes and stages

Increasing Stages

Baseline demographic, clinical, and cognitive characteristics

	S1/Typical	S2/L Temporal	S3/Posterior	P-value
Baseline	(n = 144)	(n = 111)	(n = 104)	
Age	58.9 (4.1)	58.9 (3.9)	59.6 (3.9)	0.31
Sex - Female	78 (54.2%)	63 (56.8%)	57 (54.8%)	0.92
Yrs. of Education	15.6 (2.5)	15.6 (2.4)	15.8 (2.4)	0.66
Tau SUVR	2.0 (0.5)	2.0 (0.3)	1.8 (0.4)	0.04
Centiloids	103.8 (29.6)	103.5 (24.5)	101.4 (28.9)	0.79
MMSE	21.1 (5.7)	20.6 (5.5)	22.2 (4.6)	0.07
CDR-SB⁺	4.1 (2.3)	3.7 (1.8)	3.8 (1.8)	0.22
Clinical Stage - Dementia	108 (75.0%)	84 (75.7%)	75 (72.8%)	0.61
Phenotype - Amnestic	124 (86.1%)	88 (79.3%)	78 (75.0%)	<0.001
ApoE4 - Carrier	71 (50.7%)	59 (54.6%)	65 (63.7%)	0.36
SuStaln Stage	12.1 (4.2)	12.6 (2.6)	11.8 (3.9)	0.29
Cognitive assessment (domains)				

+: higher score on this test indicates worse performance

Subtype * stage, *P* = 0.74 15 S1: +0.19 CDR-SB/stage

CDR-SB ~ baseline subtype * stage + covariates

Mean (SD); n (%). Centiloid: standardized measure of global amyloid burden MMSE: Mini-Mental State Examination CDR-SB: Clinical Dementia Rating – Sum of Boxes Pavalues correspond to omnibus tests (analysis of variance/

P-values correspond to omnibus tests (analysis of variance/chi-squared) comparing the three subtypes.

Longitudinal analysis

Follow-up Visits Overview

Longitudinal analysis Subtraction Count 359 Mean Follow-Up Interval: 1.90±0.94 yr Subtraction 77 (38%) 25 (12%)

3

PET visits

4

2

1

Subtype stability over time

Total Agreement: 86%, κ: 0.78

Stage progression over time

Changed vs. Unchanged

Voxelwise analysis of longitudinal change in tau based on baseline subtype

Tau SUVR ~ baseline subtype * time + sex + yrs. of education + age + Centiloid + CDR-SB + SuStaIn stage + (1 + time | participant) (Covariates are all baseline measurements)

Longitudinal modeling of cognitive scores, e.g.

CDR-SB ~ baseline subtype * time + sex + yrs. of education + age + Centiloid + (1 + time | participant)

MRI

Baseline subtype * time, FWE p < 0.05

Summary

Identify **distinct patterns of tau-PET in EOAD** (through SuStaIn), characterized by

- Associations with known AD clinical phenotypes
- Longitudinal stability and reasonable progression
- Varying trajectories of tau accumulations and atrophy
- Differences in prospective clinical decline

Implication: potential to refine prognosis and improve disease progression monitoring in clinical practice and trials

Thank you for listening!

Questions?