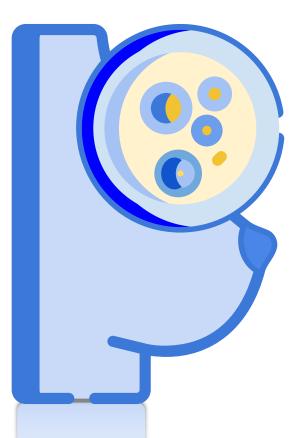
# Ensemble Learning Breast Lesion Classification based on Magnetic Resonance Spectroscopic Imaging and Diffusion-Weighted Imaging

Dr. Albert Thomas<sup>1</sup>, Dr. Ajin Joy<sup>1</sup>, Andres Saucedo<sup>1</sup>, MARLENE LIN<sup>2</sup>

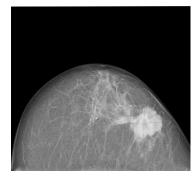
1 Radiological Sciences Department, UCLA

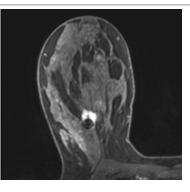

2 Computational and System Biology Department, UCLA

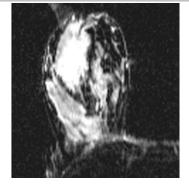
# **Breast cancer early detection**

 $\cdot$  Lifetime risk of 12.92% and approximately 297,790 new cases to be diagnosed in females in the U.S. in 2023

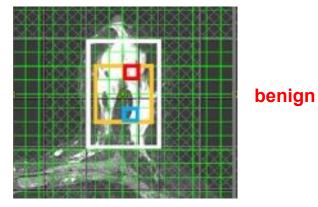
 Early detection of malignancy before metastasis improves treatment outcomes


 $\cdot$  Small sizes and slow proliferation of early tumors — difficult to detect



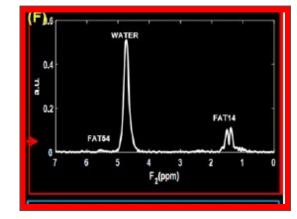


# **Existing Techniques**

X-ray based Magnetic Resonance Imaging (MRI) based

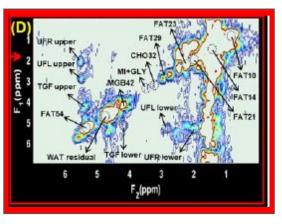

| Mammography                                                                  | Dynamic-contrast Enhanced MRI<br>(DCE-MRI)                                                 | Diffusion-Weighted Imaging<br>(DWI)                                                    |                              |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|
| <ul> <li>Gold Standard</li> <li>Fast Scanning</li> </ul>                     | · High sensitivity                                                                         | <ul> <li>High sensitivity in<br/>conjunction with DCE-MRI</li> </ul>                   | Multiparameti<br>MRI (mpMRI) |
| <ul> <li>Increased false findings</li> <li>Use ionizing radiation</li> </ul> | <ul> <li>Wide range of <b>specificity</b></li> <li>Contrast potentially harmful</li> </ul> | <ul> <li>Wide range of <b>specificity</b></li> <li>Not protocol for breasts</li> </ul> |                              |








# Magnetic Resonance Spectroscopic Imaging (MRSI)




Volume-of-interest (VOI) placement

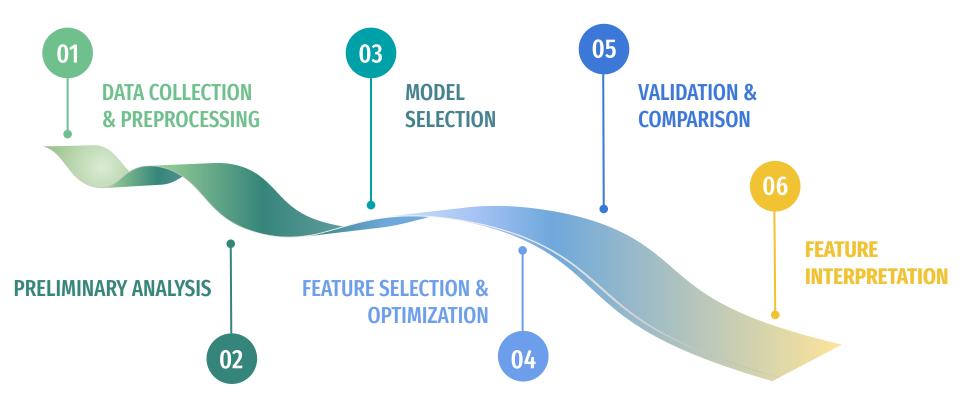
#### 1D Spectra



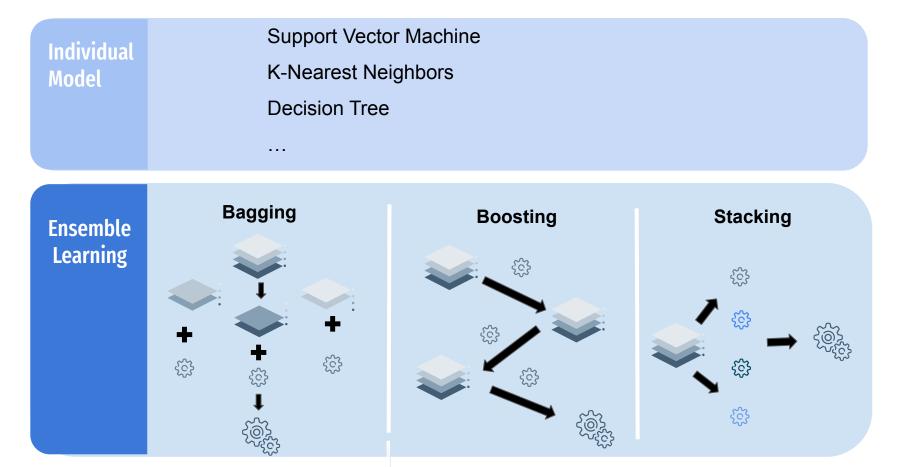
2D Spectra



# A pilot study


## **Evaluate the practicality of using MRSI + DWI features in breast lesion classification**

**Classifiers**: - Machine Learning Classifiers


**Outcomes: -** Benign and malignant breast tumor classification

- Interpret model outcomes and significant features - cancer biology

## **Methods - Overview**



# **Classification Model Selection**



# **Results - Data and Features**

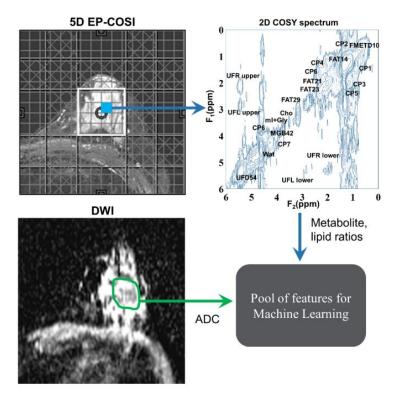


### **DWI - radiomic feature extraction**

 Apparent Diffusion Coefficients Maps from Diffusion-Weighted Imaging

## **MRSI** - metabolite ratio quantitation

- · 24 Metabolites are quantitated w.r.t. 4 ratios
- $\cdot$  1D water, fat fraction and unsaturation index

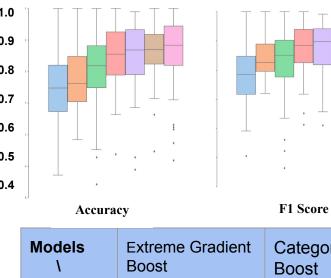

## Statistical tests of differences + Recursive Feature Elimination

Lipid cross-peaks & diagonal peaks from the 2D spectra + ADC

## **Correlation Analysis**

· Examine potentially redundant variables

· Reduce the chance of model overfitting

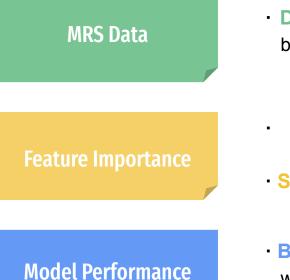



# **Results - Models**

**ROC curves for the final models** 

1.0 1.0 0.9 0.8 0.8 0.7 0.6 0.6 **True Positive Rate** 0.5 0.4 04 Linear SVM DT-based Bagging RandomForest AdaBoost 0.2 GradientBoost XGBoost CatBoost 0.0 0.0 0.2 0.4 0.6 0.8 1.0

**False Positive Rate** 




#### **Testing Scores**



| Models<br>\<br>Metrics | Extreme Gradient<br>Boost | Categorical<br>Boost | Gradient Boost |
|------------------------|---------------------------|----------------------|----------------|
| Accuracy               | 86% ± 9.6%                | 87% ± 9.6%           | 87% ± 7.9%     |
| F1 Score               | 88% ± 8.6%                | 88% ± 9.9%           | 89% ± 6.7%     |

# Conclusion



 Demonstrated that 2D spectra + ADC values could be used to build ML Classifiers for malignant v.s. benign breast lesion

 Identified multiple cross-peaks from 2D correlated spectroscopy spectra as important features for the ML classification
 Showed advantage of two spectral dimensions over one

Built Gradient Boost-based classifiers
 with performance comparable to existing methods.



# References

- 1. American Cancer Society. (2023). Cancer facts & figures 2023 | American Cancer Society. American Cancer Society | Information and Resources about four Cancer: Breast, Colon, Lung, Prostate, Skin. <u>https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html</u>
- Joy, A., Saucedo, A., Joines, M., Lee-Felker, S., Kumar, S., Sarma, M. K., Sayre, J., DiNome, M., & Thomas, M. A. (2022). Correlated MR spectroscopic imaging of breast cancer to investigate metabolites and lipids: acceleration and compressed sensing reconstruction. BJR open, 4(1), 20220009. <u>https://doi.org/10.1259/bjro.20220009</u>
- 3. Pashayan, N., & Pharoah, P. D. (2020). The challenge of early detection in cancer. Science, 368(6491), 589-590. https://doi.org/10.1126/science.aaz2078
- Mehta, R., Bu, Y., Zhong, Z., Dan, G., Zhong, P. S., Zhou, C., Hu, W., Zhou, X. J., Xu, M., Wang, S., & Karaman, M. M. (2023). Characterization of breast lesions using multi-parametric diffusion MRI and machine learning. Physics in medicine and biology, 68(8), 10.1088/1361-6560/acbde0. <u>https://doi.org/10.1088/1361-6560/acbde0</u>
- 5. Zhou Z-H (2021). Ensemble learning: Springer; 2021.